A Ratio Ergodic Theorem for Multiparameter Non-singular Actions
نویسنده
چکیده
We prove a ratio ergodic theorem for non-singular free Z and R actions, along balls in an arbitrary norm. Using a Chacon-Ornstein type lemma the proof is reduced to a statement about the amount of mass of a probability measure that can concentrate on (thickened) boundaries of balls in R. The proof relies on geometric properties of norms, including the Besicovitch covering lemma and the fact that boundaries of balls have lower dimension than the ambient space. We also show that for general group actions, the Besicovitch covering property not only implies the maximal inequality, but is equivalent to it, implying that further generalization may require new methods.
منابع مشابه
Non-linear ergodic theorems in complete non-positive curvature metric spaces
Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...
متن کاملA Mean Ergodic Theorem For Asymptotically Quasi-Nonexpansive Affine Mappings in Banach Spaces Satisfying Opial's Condition
متن کامل
Individual ergodic theorem for intuitionistic fuzzy observables using intuitionistic fuzzy state
The classical ergodic theory hasbeen built on σ-algebras. Later the Individual ergodictheorem was studied on more general structures like MV-algebrasand quantum structures. The aim of this paper is to formulate theIndividual ergodic theorem for intuitionistic fuzzy observablesusing m-almost everywhere convergence, where m...
متن کاملDiscrete Analogues of Singular Radon Transforms
The purpose of this paper is to describe recent results we have obtained in finding discrete analogues of the theory of singular integrals on curves, or more generally of "singular Radon transforms," at least in the translation-invariant case. Our theorems are related to estimates for certain exponential sums that arise in number theory; they are also connected with Bourgain's recent maximal er...
متن کاملAbstracts of the Talks
S OF THE TALKS Hillel Furstenberg, Hebrew U. Qualitative Laws of Large Numbers. Abstract: If X1,X2, . . . ,Xn, . . . is an iid sequence of non-singular matrices, and we form the ”random product” Yn = X1 ∗ X2 ∗ X3 ∗ ⋯ ∗ Xn and let n → ∞ we find that the Yn tend to have a certain form. We analyze this phenomenon. If X1,X2, . . . ,Xn, . . . is an iid sequence of non-singular matrices, and we form ...
متن کامل